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ABSTRACT
Coordinating multiagent systems to maximize global infor-
mation collection both presents scientific challenges (what
should each agent aim to achieve?) and provides applica-
tion opportunities (planetary exploration, search and res-
cue). In particular, in many domains where communication
is expensive (for example, because of limited power or com-
putation), the coordination must be achieved in a passive
manner, without agents explicitly informing other agents of
their states and/or intended actions. In this work, we ex-
tend results on such multiagent coordination algorithms to
domains where the agents cannot achieve the required tasks
without forming teams.
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1. INTRODUCTION
Coordinating multiple robots to achieve a system-wide ob-

jective in an unknown and dynamic environment is critical
to many of today’s relevant applications, including the au-
tonomous exploration of planetary surfaces and search and
rescue in disaster response [3, 4]. In such cases, the en-
vironment may be dangerous, uninhabitable to humans all
together, or sufficiently distant from central control that re-
sponse times require autonomous, coordinated behavior.

In this work, we focus on problems where robots need
to coordinate their actions to achieve high levels of perfor-
mance. We investigate the use of difference objective func-
tions to promote team formation [2, 1]. The key contribution
of this work is to extend those results to problems requiring
coordination through the coupling of the robots’ objective
functions (e.g., no explicit coordination directives).
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The application domain we selected is a distributed infor-
mation gathering problem. First we explore the case where
unless a particular point of interest is observed by n robots,
the point of interest is not considered as observed. Second we
explore the case where there is an optimal number of robots
(n) that need to observe a point of interest, but where the
system receives some value for observations by teams with
other than n members.

2. ROBOT COORDINATION
The multi-robot information gathering problem we inves-

tigate in this work consists of a set of robots that must ob-
serve a set of points of interest (POIs) within a given time
window [2]. The POIs have different importance to the sys-
tem, and each observation of a POI yields a value inversely
related to the distance the robot is from the POI.

Each robot uses a two layer sigmoid activated artificial
neural network to perform this mapping. The weights of
the neural network are adjusted through an evolutionary
algorithm for ranking and subsequently locating successful
networks within a population. The algorithm maintains a
population of ten networks, utilizes mutation to modify in-
dividuals, and ranks them based on a performance metric
specific to the domain. The inputs to this function approxi-
mator are four POI sensors and four robot sensors, providing
the POI and robot “richness” of each quadrant. Two out-
puts from the function approximator indicate the velocity of
the robot (in the two axes parallel and perpendicular to the
current robot heading) [2, 1].

3. REQUIRING TEAM FORMATION
In the first problem we examine, the robots need to form

teams to perform a task and contribute to the system ob-
jective. Here, if more than two robots visit a POI, only the
observations of the closest two are considered and their visit
distances are averaged in the computation of the system ob-
jective (G), which is given by:
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where Vi is the value of the ith POI, δi,j is the closest
distance between jth robot and the ith POI, and N1

i,j and

N2
i,k determine whether a robot was within the observation

distance δo and the closest or second closest robot, respec-
tively, to the ith POI. The single robot objective used by
each robot only focuses on the value a robot receives for
observing a particular POI:
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Figure 1: Maximum objective achieved for equal num-

bers of robots and POIs. Performance of system, local, and

difference objectives requiring teams of two robots.

Pj (z) =
X
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δi,j

if δi,j < δo (2)

where notation is the same as above. This objective pro-
motes selfish behavior only, providing a clear, easy-to-learn
signal, but one not aligned with the system objective as a
whole. Finally, the difference objective for a robot provides
system-wide beneficial behavior, while remaining sensitive
to the actions of a robot [2]:
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where l is the third closest robot to POI i (robots j and k
are the closest two).

The environment was highly dynamic, where 10% of the
POIs (selected randomly) changed location and value at each
episode. This was done to encourage specific coordination
behavior based on sensor inputs rather than specific x-y co-
ordinates. The results are based on 2000 episodes of 30 time-
steps each, and are averaged for significance. Figure 1 shows
that performance was similar for small problems, but that
the difference objective provided a better signal to promote
team formation for larger problems.

4. ENCOURAGING TEAM FORMATION
In the second problem we examine, multiple robots are

encouraged (rather than required) to form teams to perform
a task. In this problem, a POIs value is optimized for n
robots observing it, but the system receives lesser value for
other numbers of robots observing the POI. For these objec-
tives, δo remains the same, and as before, three objectives
are defined, beginning with the system objective given by:

G(z) =
X

i

αVixe
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β (4)

where i indexes POIs, x is the number of robots within
δo, β is the observation capacity, and α is a constant cho-
sen to be 1.37 such that the maximum of the exponential
curve approximates the POI value Vi. For this new system
objective, the selfish robot objective is defined as:

Figure 2: Maximum objective achieved for equal num-

bers of robots and POIs. Performance of system, local, and

difference objectives encouraging teams of two robots.
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where indexing and constant selection is the same as above.
This objective includes no information regarding contribu-
tion to the system as a whole, rather indicating only what
robot j can directly observe (the component of the system
objective for which robot j was within δo). Finally, the dif-
ference objective for this system results in:
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where indexing and constant selection is the same as above.
This objective aims to provide the contribution of robot j
to the system.

Here again Figure 2 shows that as the system increases
in complexity, the difference objective, through providing a
better learning signal, provides consistent behavior through
the increased complexity of the system. The system and lo-
cal learning objective performance tapers off, where using
the difference objective maintains its’ performance slope,
clearly indicating that when the number of robots within
the system becomes large, the difference objective is able to
maintain successful dynamic team formation.
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